表1 消费者外表印象与消费行为评估指标体系指标选择项性别(I1) A:男; B:女年龄(I2)A: 12~17; B: 18~24;C: 25~34;D: 35~49;E: 50~64; F: 65岁以上身高(I3)A: 1. 4米以下; B: 1. 4~1. 5米;C: 1. 51~1. 6米;D: 1. 61~1. 7米;E: 1. 71~1. 8米; F: 1. 8米以上体型(I4) A:很瘦; B:比较瘦;C:匀称;D:比较丰满;E:很丰满衣裤(I5)A:高档; B:有点档次;C:大众化;D:比较低档; E:非常低档服饰(I6)A:非常精致; B:比较淡雅;C:大众化;D:比较有个性;E:非常独特打扮(I7)A:很合体; B:比较合体;C:大众化;D:比较有个性;E:非常独特发型(I8)A:很流行; B:有修饰、简洁;C:自然、普通;D:刻意、新潮;E:非常独特文化(I9)A:很有知识; B:比较知识;C:大众化;D:比较少文化;E:很少文化气质(I10) A:高贵; B:文雅;C:大众化;D:大方;E:急躁行动(I11)A:小心谨慎; B:有点保守;C:一般; D:比较随意;E:率直脸谱(I12) A:很有活力; B:阳光;C:一般;D:刻板;E:低沉眼神(I13)A:非常灵活; B:比较灵活;C:一般; D:比较专注;E:非常专注言谈(I14)A:喜欢交谈; B:能交谈;C:一般;D:少言语;E:沉默不语2. 2 数据预处理表2和表3是指定的女式长袖针织时尚衫的消费者消费行为统计表,销售季节为8月底到12月初,其5折价为250元。厂家给此产品的定位为25~34岁、温柔典雅型、中等收入的白领女性。
表2 各特征各类别分布情况
特征A B C D E F总计性别3 402— — — —405年龄9 65 220 82 17 12 405体型6 105 180 102 12—405衣裤20 143 215 27 0—405服饰12 159 177 54 3—405打扮37 156 182 30 0—405发型15 165 198 24 3—405文化8 222 148 27 0—405气质0 107 187 98 11—405行动15 66 165 144 15—405脸谱42 69 243 15 36—405眼神15 126 174 81 9—405言谈30 150 183 31 11—405表3 各特征各类别的购买分布情况特征A B C D E F总计性别3 78— — — —81年龄3 12 42 15 6 3 81体型0 24 39 15 3—81衣裤0 33 43 5 0—81服饰0 24 49 8 0—81打扮3 36 36 6 0—81发型0 24 51 6 0—81文化0 39 39 3 0—81气质0 21 36 24 0—81行动7 16 32 17 0—81脸谱7 18 44 10 2—81眼神0 24 41 13 3—81言谈7 29 34 13 0—81实验中共记录了405位女性的特征,未排除重复访问的女性。表2为消费者特征分布表,表3为对应的购买情况分布表。405条消费行为记录中购买记录有81条,其他为未购买记录。
2. 3 决策树模型与分类实例
经过上面的数据预处理后,可以利用信息熵来分析厂商产品营销定位是否准确,也可通过最后规则的建立来为销售人员提供推销策略,以集中精力对付那些犹豫不决的人。下面分别给出面向“性别、年龄和打扮”的信息熵增益情形。可以看出,性别的增益最大,这说明,厂商首先必须按“性别”进行分类,其次是“年龄”,然后是“打扮”。这说明厂商的分类基本上是正确的。这样可得到一条营销规则:如果对象为女性,其年龄为25~34岁,打扮合体,则可能会购买该服装。通常推销人员会根据厂商的指导意见来进行营销,但是还需要加入更多的元素。推销人员可进一步根据上面的分类方法来进行分类,包括发型、气质与眼神等特征,从而可锁定对象,重点应对,在有限时间内推销给更多合适的顾客,提高购买率(目前统计的结果未超过20% )。
分类属性信息量与增益(“消费行为”信息总量I0=1.28750)如下。
1)基于“性别”的分类:“性别”A的信息量IA= 0;“性别”B的信息量IB= 1. 274 31;“性别”平均信息量I=1. 26487;“性别”信息增益GI = I0-I= 0. 02263;2)基于“年龄”的分类:“年龄”A的信息量IA=0. 918296;“年龄”B的信息量IB= 1. 494919;“年龄”C的信息量IC= 1. 249884;“年龄”D的信息量ID= 1. 486566;“年龄”E的信息量IE= 1. 584963;“年龄”平均信息量I= 1. 5;“年龄”信息增益GI = I0-I= 0. 2125;3)基于“打扮”的分类:“打扮”A的信息量IA=1.29574;“打扮”B的信息量IB= 1. 54302;“打扮”C的信息量IC=1.39605;“打扮”D的信息量ID= 1. 485 48;“打扮”平均信息量I= 1.44963;“打扮”信息增益GI = I0-I=0.16213。
3 服装消费的外表印象决策树挖掘实例
第2章中的分类过程计算繁琐,在大数据量情况下,必须借助于计算机技术。决策树的程序化实现也比较简单,目前各大数据库提供商如微软提供的AnalysisManager(数据分析与联机分析器)里有决策树工具, SPSS提供的强大的数据挖掘软件Clementine也有决策树工具。本研究利用Clementine10. 1来进行基于消费者外表印象特征的消费行为挖掘,并给出分析结果。Clementine中的决策树算法C5. 0可生成树图和规则集。
图2 试穿行为规则集
分析结果显示了31条规则,包括只看或询问(a)、比划和试穿(b)、购买(c)等三种行为的分类规则。每一类规则包含若干子规则。图2显示了分析后生成有3类规则集, a类行为规则包含14个子规则, b类行为规则包含9个子规则, c类行为规则包含8个子规则。
下面给出a类行为规则的
14个子规则。a类行为是“非购买”行为,只询问或查看,营销人员无需对这部分人群分出注意力。
基于顾客印象的“非购买”规则集如下:Rule 1: if I1=B∩I5=B∩I7=A then action=aRule 2: if I8=C∩I12=A∩I13=B then action=aRule 3: if I9=A∩I11=C then action=aRule 4: if I2=C∩I11=D∩I14=E then action=aRule 5: if I2=C∩I8=B∩I11=D∩I13=E then action=aRule 6: if I2=E∩I8=B then action=aRule 7: if I8=E then action=aRule 8: if I2=C∩I4=C∩I8=B then action=a…c类行为是“购买”行为,这部分来到店铺基本上有购买意向,取决于服装对其吸引力。营销人员的主要任务是培养其忠诚度。
基于顾客印象的“购买”规则集如下:Rule 1: if I8=B∩I12=A then action=cRule 2: if I4=C∩I6=C∩I12=C∩I14=B then action=cRule 3: if I2=C∩I11=A then action=cRule 4: if I8=B∩I13=D then action=cRule 5: if I8=C∩I14=A then action=cRule 6: if I2=B∩I14=D∩I8=B then action=cRule 7: if I2=D∩I7=B∩I8=B∩I11=D then action=cRule 8: if I8=C∩I12=D then action=c对于营销人员来说,最重要也最需要花时间精力应对的就是b类用户,这部分用户中有部分人有购买倾向,因此,营销人员必须采用适当的手段,包括:价格或促销性优惠、重点推荐、说服与对比以及其他策略。这些方法的应用必须根据具体的消费者特征来实施。图2是对比划、试穿行为规则的展开,显示了4条规则。例如:规则3表示如果客户的年龄在24~35岁,体型匀称,而服饰比较淡雅,能交谈,但行动比较随便,则客户的行为通常是比划或试穿,不购买。比划或试穿这说明客户有需求意向,但最后未买。原因可能是价格问题,也可能是一些服装特征如尺码、款式风格、细节部件或者颜色等不符合消费者需求,如果是尺码问题回旋余地小,但其他问题应该可能得到解决。
从数据挖掘的结果来看,对于该款服装的分类应该从性别、年龄着手,然后是打扮、言谈、脸谱,这说明厂商的分类大范围内是恰当的,而销售商还需要进一步细分才能提高销售效率。
4 结语
建立这种消费行为与客户外表特征印象关联模型的好处是为营销人员提供一些经验规则,以指导销售人员在有限的时间内把握客户,把b型客户尽量转化为c型客户,从而创造更大的销售量,供应链的上游成员也可因此获得更大的订单而获利。从另一个角度来说,生产商可根据消费群体的喜好特征、群体密度来开发有针对性的产品,从而帮助实现小批量生产、个性化地开展快速营销活动。决策树算法的数据挖掘技术,计算速度快,实现起来比较容易,而且现在很多的数据库厂商的产品中都提供了这种功能,容易为一般操作人员使用。要嵌入到自己的小商业系统中,则需自己建立挖掘模型。
未来的工作是将服装按性别、年龄、款型分类,然后进行实地跟踪和观察,集中进行规则挖掘,构成服装消费者的外表特征印象与消费行为关联规则库,指导销售人员的营销。
参考文献:
[1] 许多顶.网络数据库营销[J].商业研究, 2002(18): 121-123.
[2] 唐晓宇.个性化消费需求下的网络数据库营销的竞争优势[J].
商业研究, 2002(4): 94-95.
[3] 欧阳钟辉,王欢.客户关系管理与数据库营销体系[J].统计与决策, 2008(18): 165-167.
[4] LI S T, SHUE L Y, LEE S F. Business intelligence approach tosupporting strategy-making of ISP service management[J]. ExpertSystem withApplication, 2008, 35(3): 739-754.
[5] APTE C, WEISS SM. Dataminingwith decision trees and decisionrules[J]. FutureGeneration ComputerSystems, 1997, 13(2): 197-210.
[6] 何田中,程从从.基于Rough集的规则抽取技术[J].南昌大学学报:工科版. 2007, 29(1): 91-94.
[7] 罗后平.数据挖掘在市场营销中的应用[J].商业研究, 2003(23): 143-14.
[8] WENW. A knowledge-based intelligentelectronic commerce systemfor selling agricultural products[J]. Computers and Electronics inAgriculture, 2007, 57(1): 33-46.
[9] 张红霞,黄建军.消费者个人特征对其超市购买频率的影响[J].商业研究, 2005(13): 35-41.
[10] 王国顺,权明富,李小文.基于客户消费行为细分的营销决策分析[J].南开管理评论, 2005, 8(1): 52-56.
[11] SAFAVIAN SR, LANDGREBE D. A survey ofdecision tree classi-fiermethodology[J]. IEEE Transactionson System, Man andCyber-netics, 1998, 22(5 /6): 660-674.
[12] 李强.创建决策树算法的比较研究———ID3, C4. 5, C5. 0算法的比较[J].甘肃科学学报, 2006, 18(4): 84.
[13] 黄梯云.智能决策支持系统[M].北京:电子工业出版社, 2001.