首页
杂志网
当前位置:首页>>计算机技术>第四代移动通信系统概述>正文

第四代移动通信系统概述

来源:杂志发表网时间:2015-12-21 所属栏目:计算机技术

  

摘要:结合当前的发展趋势阐述了第四代移动通信系统的概念、目标要求和具体特点,并对第四代移动通信系统中可能采用的一些关键技术进行了讨论。
关键词:第四代移动通信关键技术

0 引言
第三代移动通信(3G)在20 世纪80 年代末提出时倍受关注,近年来却遭遇降温。究其原因,单从技术角度考虑,3G系统就有很多需要改进的地方,如采用电路交换,而不是纯IP方式;所能提供的最高速率只有384kbit/s(标称最高速率为2Mbit/s)不能满足用户对移动通信系统的速率要求;不能充分满足移动流媒体通信(视频)的完全需求;没有达成全球统一的标准等。
正是由于3G的诸多不足,使得在3G还没有大规模投入商用、距离完全实用化还有一段时间的情况下,国内外移动通信领域的专家就已经在进行第四代移动通信系统(4G)的研究和开发工作。
1 什么是第四代移动通信技术
严格说来,现在还不能对第四代移动通信作出确切地定义,但可以肯定,4G通信将是一个比3G通信更完美的无线世界,它可以创造出许多难以想象的应用。
关于4G的一般描述为:“第四代移动通信的概念可称为广带接入和分布网络,具有非对称的和超过2Mbit/s的数据传输能力。它包括广带无线固定接入、广带无线局域网、移动广带系统和互操作的广播网络(基于地面和卫星系统)。此外,第四代移动通信系统将是由多功能集成的宽带移动通信系统,也是宽带接入IP系统”。
实际上,世界各国在对4G的设想上存在着巨大的差异。
欧洲国家一般认为4G是一种可以有效使用频谱的数据通信技术,并且以IPv6为基础!网络上的所有单位都有自己的IP地址。通过在移动通信网络中引入IPv6 就可以把现有的各种不同的网络融合在一起,如4G网络将会融合卫星和平流层通信系统、数字广播电视系统、各种蜂窝和准蜂窝系统#无线本地环路和无线局域网,并且可以和2G、3G兼容。
与欧洲关于4G的观点正相反。日本热衷于建立一个单一的4G全球标准。
美国则希望把WLAN 技术进行扩展,从而演进为4G的基础。
2 第四代移动通信的目标要求和特点
2.1目前业界人士对第四代移动通信已达成的共识
a)与已有的数字移动通信系统相比,4G系统应具有更高的数据速率和传输质量。更好的业务质量(QoS)更高的频谱利用率,更高的安全性\智能性和灵活性;
b) 可以容纳更多的用户,应能支持包括非对称性业务在内的多种业务;
c) 4G系统应体现移动与无线接入网和IP网络不断融合的发展趋势,将在不同的固定和无线平台以及跨越不同频带的网络运行中提供无线服务;
d) 能实现全球范围内多个移动网络和无线网络间的无缝漫游,包括网络无缝\终端无缝和内容无缝;
e) 将是多功能集成的宽带移动通信系统,不仅联系人与人,更将联系人与机器、环境,人们将能够随时随地的接入需要的多媒体信息,并可远端控制其他设备。
2.2第四代移动通信系统的一些具体特点
2.2.1传输速率更快
4G系统的目标速率为:
a)对于大范围高速移动用户(250km/h)数据速率为2Mbit/s;
b) 对于中速移动用户(60km/h)数据速率为20Mbit/s;
c) 对于低速移动用户(室内或步行者),数据速率为100Mbit/s。
2.2.2带宽更宽
据研究,每个4G信道将占有100MHz或更多带宽,而3G网络的带宽则在5~20MHz之间。
2.2.3容量更大
将采用新的网络技术(如空分多址技术等)来极大地提高系统的容量,以满足未来大信息量的需求。
2.2.4智能性更高
4G系统的智能性更高"它将能自适应地进行资源分配,处理变化的业务流和适应不同的信道环境。
4G网络中的智能处理器将能够处理节点故障或基站超载,4G通信终端设备的设计和操作也将智能化。
2.2.5实现更高质量的多媒体通信
4G通信能提供的无线多媒体通信服务将包括语音、数据、影像等,大量信息透过宽频信道传送出去,让用户可以在任何时间、任何地点接入到系统中,因此4G也是一种实时的&宽带的以及无缝覆盖的多媒体移动通信。
2.2.6兼容性能更平滑
要使4G通信尽快地被人们接收,还应该考虑到让更多的用户在投资最少的情况下轻易地过渡到4G通信。因此,从这个角度看,4G通信系统应当具备真正意义上的全球漫游(包括与3G、WLAN和固定网络之间无缝隙漫游)接口开放、能跟多种网络互联、终端多样化以及能从2G平稳过渡等特点。
2.2.7业务的多样性
在未来的全球通信中,人们所需的是多媒体通信,因此个人通信、信息系统、广播和娱乐等各行业将会结合成一个整体,提供给用户比以往更广泛的服务与应用。系统的使用也会更加安全、方便,更加照顾用户的个性。
2.2.8灵活性较强
4G系统将能够自适应地进行资源分配,调整系统根据通信过程中变化的业务流大小进行相应处理。对信道条件不同的各种复杂环境都能进行信号的正常发送与接收,具有很强的智能性、适应性和灵活性。
用户将使用各式各样的移动设备接入到4G系统中来。设备与人之间的交流不再是简单的听、说、看,还可以通过其他途径与用户进行交流。4G移动设备的功能已不能简单地划归到“电话机”的范畴,而且从外观和式样上也将会有更惊人的突破,也许眼镜、手表、旅游鞋等都有可能成为4G终端。
2.2.9用户共存性
4G中的移动通信技术能够根据网络的状况和变化的信道条件进行自适应处理,使低速与高速用户以及各种各样的用户设备能够并存与互通,从而满足系统多类型用户的需求。
2.2.10通信费用更加便宜
4G通信能解决与3G的兼容性问题,让更多的现有通信用户轻易地升级到4G通信,而且4G通信引入了许多尖端通信技术,相对其他技术来说,4G通信部署起来就容易、迅速得多。
2.2.11灵活的网络结构
4G系统的网络将是一个完全自治、自适应的网络,它可以自动管理、动态改变自己的结构以满足系统变化和发展的要求。4G系统具有不同的网络结构,可能存在与1G、2G、3G完全不同的、没有基站的网络结构,包括Ad hoc网_自组织网络。
2.2.12将能实现不同QoS的业务
4G系统通过动态带宽分配和调节发射功率来提供不同级别的QoS
34G系统中可能的关键技术
近年来人们对实现B3G/4G的关键技术进行了大量的研究,并取得了初步的成果。归纳起来可分为以下一些方面。
3.1未来移动通信系统需要研究的课题
a)与系统相关的技术:IP 语音技术,软件无线电技术,广带无线收发信机,移动服务的系统平台,高可靠性的网络结构,全IP 无线,安全性、加密、计费、身份认证及移动电子商务Ad hoc 网技术。
b) 与应用相关的技术:下一代编码/压缩技术,动态可变码率编码技术,移动代理技术,人_机接口(包括“智能”移动终端),流数据通信技术,内容描述语言,应用发展环境技术。
c) 先进的无线接入技术:动态QoS控制,差错控制及超高速小区搜索,多播技术,IP 移动性控制,无缝IP 包传输,链路自适应,光纤无线电。
d) 频率的有效利用:微波频带的开拓,频带的共用与频率的共享,自适应动态信道分配,抗干扰与抗衰落技术,高密度三维蜂窝结构,自适应阵列无线及多输入多输出(MIMO)天线系统,自适应高效多电平调制,正交频率复用(OFDM)技术。
e) 先进的移动终端:新的功率管理技术,可包装终端技术,高功能显示器件技术,语声识别技术,下一代半导体器件技术,灵敏度的增强,移动终端的系统平台,移动终端安全性增强技术。
3.2 4G系统中可能用到的一些关键技术
3.2.1无线接入方式与多址方案
a) 在FDMA、TDMA、CDMA和OFDM 等多址方式中,OFDM 是4G系统最为合适的多址方案,从目前的研究进展来看,OFDM 也是将来4G系统最有可能采用的多址方式。
OFDM 是无线环境下的一种特殊的多载波传送方案。无线信道的频率响应曲线大多是非平坦的,即具有频率选择性,而OFDM 技术的主要思想就是在频域内将给定信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,并且各子载波并行传输,这样,尽管总的信道是非平坦的,但每个子信道是相对平坦的,并且在每个子信道上进行窄带传输,信号带宽小于信道的相应带宽,因此就可以大大消除信号波形间的干扰。另外,OFDM 弃用了传统的使用带通滤波器来分隔子载波频谱的方式,改用跳频方式来选用那些即便频谱混叠也能够保持正交的波形,而且OFDM 系统的各个载波可以根据频谱利用率和误码率的最佳平衡原则来为子载波选择不同的调制方式,如BPSK、QPSK、8PSK、16QAM、64QAM 等。
OFDM 的主要优点是对多径衰落和多普勒频移不敏感,能对抗频率选择性衰落或窄带干扰,能够克服高速率数据传输时符号间干扰增大的问题;各个子信道的载波相互正交,在减小子载波间的相互干扰的同时又提高了频谱利用率;硬件实施简单等。
OFDM 的主要缺点是功率效率不高,对载频的偏置较敏感。OFDM 系统对载频的偏置比较敏感的主要原因是在频率选择性深衰落情况下,OFDM 系统在相应子载波上的数据可能被破坏。为此,众多学者把OFDM 与直接序列扩频相结合,使得信号可以在多个载波上扩展,这样一来就能有效地利用未被破坏的子载波上的信息恢复出原始数据,实现频率的分集。
OFDM技术的主要技术难点是系统中的频率和时间同步、基于导频符号辅助的信道估计、峰平比问题、多普勒频偏引起的互载频干扰(ICI)降低系统性能的问题以及基于OFDM 、多载波技术的新一代蜂窝移动通信系统的多址方案的研究。
b)日本NTTDoCoMo提出的4G移动系统方案的无线接入方式为VSF(variable speding factor)-OFCDM(orthogonal frequency and code division mul-tiplexing)。VSF-OFCDM在采用多载波的同时,进行与CDMA 相同的扩散处理来增大容量。
其最大特点在于,可以根据具体的通信服务来改变时间方向与频率方向上的扩散率,从而在类似热点的孤立区域,通过降低扩散率来优先增大传输速率;而在用户众多的环境下,提高扩散率,增加系统容量。这种接入方式可以提高频谱利用率,并且不受多径干扰的影响,可通过改变扩频因子,应用于高密度业务区和一般业务区。


3.2.2调制与编码
a) 多载波调制(MCM)技术的基本原理是将所要传输的数据流分解成若干个子数据流,每个子数据流具有低得多的数据传输比特速率,用这些数据流去并行调制若干个载波,然后合成输出。其主要优点是可以有效抑制在单载波系统接收机中由于线形均衡所引起的噪声及干扰的提高,较长的信元周期对噪声和快衰落有更大的抵抗性。
时间弥散是无线信道传输速率受限的一个主要原因,而在多载波调制的子信道中,数据传输速率相对较低,码元周期长,只要时延扩展与码元周期之比小于一定的值就不会产生码间干扰,即MCM 对新到的时延弥散不敏感,具有抗时延弥散的特性。
MCM通常可以通过多载波码分多址(MC-CD-MA)、正交频分复用时分多址(OFDM-TDMA)和多音实现几种技术途径来实现。
b) 自适应调制与编码(AMC)是目前研究的又一热点技术。AMC 的原理是根据信道条件(基于从接收机反馈信息来估计)瞬时的变化改变调制与编码格式,对每个用户的链路参数优化$以达到最大化系统容量。
具有AMC的系统,接收机将收集一系列信道的统计数值,提供给发射机和接收机去优化系统参数(如调制及编码、信号带宽、信号功率、训练周期、信道估值滤波器、以及自动增益控制等),允许按照信道条件分配给不同的用户不同的数据率。对于靠近小区基站的用户分配给较高码率的较高阶的调制(如64QAM,R=3/4Turbo),对于靠近小区边界的,则分配给具有较低码率的较低阶调制(如QP-SK,R=1/2Turbo码)。AMC扩展了系统自适应良好信道条件的能力。
预计4G系统将会采用多载波调制技术#
3.2.3无线链路增强技术
能够提高容量和覆盖的无线链路增强技术有分集技术,如通过空间分集、时间分集(信道编码)、频率分集和极化分集等方法可获得最好的分集性能;多天线技术,如采用2 或4天线可实现发射分集,或者采用MIMO 技术可实现发射和接收分集。
对4G广带无线移动通信高性能的要求,促使其在基站及用户终端采用多天线系统。
广带信道是一个典型的非视线信道,并包含不匹配性,如时间选择性及频率选择性衰落。传统无线通信理论一直将多径传播视为造成无线信号衰落的干扰之一,而采用多天线则产生了多个空间信道,所有的信道不会同时产生衰落,因此MIMO天线系统恰恰利用了传播环境的多径特性,极大地提高了前向和反向链路的容量,并增加通信范围与可靠性。
3.2.4高效的频谱使用方案
频谱资源是一种有限的资源,在4G系统中,一方面要采用有效的措施提高频谱利用率,另一方面要开发新的频谱资源。因此,研究高频段宽带信号传输特性就变得非常重要。
3.2.5基于IP 的核心网
综观当前的发展趋势,IP 被认为是下一代移动通信最适合的网络层技术。统一的IP核心网络独立于具体的接入方案,使不同的无线和有线接入技术实现互联与融合,无线接入点可以是蜂窝系统的基站、无线局域网(WLAN)或者是Ad hoc自组织网等。对于公用电话网、2G以及未实现全IP 的3G网络等则通过特定的网关连接。
目前移动OK 急待解决的问题有三角路由问题&漫游和切换问题&安全问题等#
3.2.6软件无线电(SDR)技术
在4G系统中,由于移动用户在不同的系统间漫游,系统之间以及系统内部需要无缝切换,而且随着4G系统的发展,会不断出现新的业务和新的需求,这些都需要对终端和网络节点进行重新配置。
软件无线电在4G中的可能应用为:
a)采用软件无线电实现的基站可同时为多个网络服务;
b) 当终端移动时可重新配置。如当移动终端移动到一个采用不同标准的移动通信系统中时,终端可按照该系统的标准重新自动配置该终端,从而使该终端获得服务。
采用软件无线电技术实现的移动终端或基站将采用模块化结构,主要由天线模块、LNA 模块、ADC/DAC功率放大器模块、DSP 模块和多媒体模块等组成。软件无线电技术主要涉及数字信号处理硬件(DSPH)、现场可编程器件(FPGA)、数字信号处理(DSP)等。
3.2.7高性能的接收机
按照Shannon定理,对于3G系统如果信道带宽为5MHz,数据速率为2Mbit/s,则所需的SNR为1.2dB;而对于4G系统,要在5MHz的带宽上传输20Mbit/s的数据,则所需要的SNR为12dB。
可见由于4G系统的速率很高,因此对接收机的性能要求也要高很多。
3.2.8智能天线技术
智能天线原名自适应天线阵列,它具有抑制干扰、自动跟踪信号以及采用空时处理算法形成数字波束等智能功能,可以跟踪强信号,减少或抵消干扰信号,实现空间分集,提高信噪比,提升系统通信质量,缓解无线通信日益发展与频谱资源不足的矛盾,降低系统整体造价。
目前,智能天线被认为是未来移动通信的关键技术之一,其工作方式主要有全自适应方式和基于预多波束的波束切换方式两种。
全自适应智能天线虽然从理论上讲可以达到最优,但相对而言各种算法均存在所需数据量、计算量大,信道模型简单,收敛速度较慢,在某些情况下甚至可能出现错误收敛等缺点;实际信道条件下当干扰较多、多径严重,特别是信道快速时变时,很难对某一用户进行实时跟踪。而对于预多波束的切换波束工作方式,全空域(各种可能的入射角)被一些预先计算好的波束分割覆盖,各组权值对应的波束有不同的主瓣指向,相邻波束的主瓣间通常会有一些重叠#接收时的主要任务是挑选一个#也有可能是几个’但需合并后再输出(作为工作模式。与自适应方式相比它显然更容易实现,实际上可将其看作是介于扇形天线与全自适应天线间的一种技术,也是未来智能天线技术发展的方向。
3.2.9多用户检测技术
多用户检测器可以提高系统的容量,因此将是
4G系统必然采用的技术.
随着多用户检测器研究的不断深入,各种高性能但算法又不特别复杂的多用户检测器算法不断被提出来,因此在实际系统中采用多用户检测技术将是切实可行的。
3.2.10系统资源管理
在第四代移动通信系统中,移动商务和对QoS有较高要求的各类业务将持续增长。网络将处理前所未有的多媒体业务量、多运营商配置、无需授权频段和Ad hoc网络拓扑等#各类结构的存在也使得具有不同QoS方案的不同域之间具有移动性和互相作用,从而显著增加了系统的全局复杂度.
这需要一个具有丰富连接性和智能的QoS 无线分组网络的支撑#系统的\先进的无线资源管理策略也成为必需。该策略的关键单元包括协调业务连接处理的业务管理部分,维护所有网络实体已分配的和可用的资源许可控制管理部分,以及按照QoS需求和业务条件在共享同一资源的业务之间分配可用资源的资源管理部分。
采用一些能够使网络有效满足不同业务请求的政策或机制#包括接入控制、资源调度、缓冲区管理和流量控制等。系统检测可用的资源以及信号的质量,然后根据不同用户、不同业务质量要求动态地分配频率资源和信号发射功率,从而大大提高系统的性能。
3.2.11 Ad hoc网络技术
未来移动通信网络除了以低成本达到高数据速率外,还要求在无专用通信基础设施下,网络具有适应和生存能力。
Ad hoc 网络或称为分组无线网络作为非集中控制网络结构,因灵活性将在未来网络中扮演重要角色。用户和路由器能在网络中随机移动的Ad ho网络正成为主要研究领域,它准许袖珍终端扩展接入和改进应急通信质量。
现今蜂窝通信系统依靠集中控制和管理,而下一代移动通信系统标准转向固定与移动网络相结合,无隙缝和全方位通信Ad hoc 模式。
Ad hoc 网络没有事先确定的基础设施和网络链路的时间特性,给分组无线网络设计和实施带来一些基本的挑战,它们是:
a) 必须优化设计安全和路由功能,保证分布式结构有效运行;
b) 在网络动态时,降低路由表更新频数和开销来保证链路连接;
c) 在多跳网络中,改进路由协议设计来减少链路容量和等待时间的波动;
d) 全面权衡网络连接(覆盖)、时延、容量和功率预算等指标;
e) 以优化功率管理和MAC设计来减少先进技术的负面效应。
3.2.12网络设计
OSI 网络分层设计已经为通信系统服务多年,随着无线网络的发展和网络功能发生变化,对网络特性的要求也发生了变化,如时延、吞吐量、支持各种QoS多媒体业务动态流量\差错率、频谱带宽、节点连续不断进出网络引起的网络拓扑变化等,这些都对网络设计提出了新的挑战。
4 结束语
以上对4G的目标和关键技术进行了一些探讨,具体的实现还会面临着许多问题。但是4G的曙光已经出现,可以预见,随着技术的进步和网络的发展,下一代的移动通信世界必将会更加灿烂辉煌。

参考文献
1 吴伟陵.移动通信中的关键技术.北京;北京邮电大学出版社,2002。
2 李世鹤.第三代移动通信技术的改进及三代后技术.第三代移动通信TD-SCDMA 技术论文集。
3 雷春娟,李承恕.关于第四代移动通信若干问题的探讨.移动通信2002(06)。
4 樊自甫.3G后移动数据通信的发展探讨.移动通信2002(10)。
5 彭艺.第四代移动通信系统及展望.电信科学2002(06)。
6 陆晓文,朱近康.无线互联网.北京:人民邮电出版社,2002。


点此咨询学术顾问 快人一步得到答案

SCI期刊问答

回到顶部